AI又对肺癌下手,依图倪浩拆解全球首个肺癌智能诊断系统

2018-06-17 14:32:00新智元
【新智元导读】四川大学华西医院与依图医疗合作研发国内首个肺癌临床科研智能病种库和全球首个肺癌多学科智能诊断系统,让人工智能走向临床科室,也给AI医疗创造了更多想象空间。

AI又对死亡率最高癌症——肺癌,下手了。


6月15日,四川大学华西医院与依图医疗合作研发出国内首个肺癌临床科研智能病种库(以下简称“肺癌病种库”)和全球首个肺癌多学科智能诊断系统

640-5.jpeg

肺癌病种库收录肺癌患者的影像、病理、基因检测、病历文本等多维数据,利用AI对数据进行整合。肺癌多学科智能诊断系统则依托病种库,以临床指南为指导,并融汇华西医学专家智慧,实现结节筛查、肺癌全类型病灶诊断覆盖。


跟目前广泛存在的AI医疗影像系统不同之处在于,肺癌多学科智能诊断系统综合多学科临床信息进行综合诊断,让医疗影像走向临床,也给AI医疗创造了更多想象空间。


不久前,IBM Watson Health裁员50%至70%,让AI医疗再次受到落地难的质疑。依图医疗总裁倪浩在接受包括新智元在内的媒体专访时表示,Watson不是AI医疗的代表,不是一流的人工智能公司,裁员对行业来说是好事。


破解三大难题:文本数据转化、影像提取复杂、数据标准化


肺癌的死亡率有多高?


四川大学华西医院院长李为民给出以下数据:


肺癌发病人数、死亡人数我国居世界之首,每年肺癌发病人数约83万,占全国癌症发病人数的20.5%;


每年肺癌死亡人数约62万,占全国癌症发病人数的27.2%,是死亡率最高的癌症


对抗肺癌的关键是早期诊断和规范治疗,其中AI诊断又在早期诊断中不断发挥作用,研究意义重大。


不过,在AI诊断肺癌过程中,通常面临以下三个问题:


1、文本数据转化问题。临床语言属于自然语言范畴,同时具备医学表述所特有的语法结构特点和语义特点,特定医学实体识别相对容易,全量信息解析提取没有现成可用的成果。


2、医疗影像提取复杂度问题。医疗影像数据属于典型的“高维数据”,内容丰富但提取复杂,若使用人工判读,工作量和一致性极差,无法进行万量级大数据处理,若基于报告进行提取,会遗漏大量信息。


3、数据标准化问题。在术语使用、描述方式等多层面,临床数据要完成彻底的标准化,才能成为高质量数据,临床工作强度高,部分数据存在描述不完整设置表述错误的情况,质量治理工作复杂。


针对上述三个问题,依图医疗分别给出三个应对措施:


1、结合医学术语本体构建技术与自然语义理解技术,自主研发医学语义解析算法,实现全量医学信息提取。


比如,医生给出如下诊断,肺癌病种库会将其分为信息抽取逻辑和信息抽取网络架构。(下图)


左肺上叶中分化腺癌(乳头型腺癌+粘液腺癌)。侵及脏层胸膜,周围肺呈慢性炎改变伴灶区碳末沉积,免疫组化示腺癌细胞:ALK-V(+,建议FISH检测)。

640-7.jpeg

这样的效果是临床信息覆盖度超过95%,重要信息覆盖度超过99.5%;自动化提取正确率98%,人工审核后综合正确率达到99.3%。


2、自主研发基于深度神经网络的影像结构化提取模型,覆盖病灶类型、病灶大小、解剖学位置、影像学征象等影像诊断的核心内容,实现病灶倍增时间自动计算与提取,进一步实现影像的高维信息提取。

640-8.jpeg

随着时间的推移,病灶的大小和位置都会有变化,依图通过深度学习,把肺的叶和段分割成3D模型,再判断病灶的位置和大小。


3、对于数据标准化问题,依图联合四川大学华西医院基于本体构建方法,建设中文医学术语库,文本结构化提取模型融合术语库,实现表述归一化;并建立精细化质量控制模型,基于逻辑推理实现错误纠正。

640-9.jpeg

李为民介绍,通过上述手段,肺癌病种库完成2.8万例肺癌患者全周期数据跨系统集成,容纳超百万份临床文档与报告,超过千万份原始医学图像。


医疗影像走向临床,算法将顶级专家的知识和经验下沉


建设全球顶级肺癌病种库是依图医疗与华西医院的合作的第一步,两者合作的路径是:


人工智能研究及成果转化→临床多中心实验→制定精准化肺癌早筛专家共识,最终让医疗影像走向临床科室。


在肺癌诊断层面上,依图医疗总裁倪浩有三代定义


第一代是大家熟悉的基于影像的病灶检出和测量。


第二代是对于病灶描述的细致的程度。第一代和第二代在整个人工智能的发展的阶段其实还处于非常早期的阶段,依图与华西医院一起合作的间接诊断和决策产品,倪浩将其定义为第三代。


与目前广泛存在的AI医疗影像系统不同,肺癌多学科智能诊断系统跨越了影像,把临床的各种各样的数据集合到系统里面来,能够做到多学科的综合诊断。系统帮助的对象也不止是放射科的医生,还覆盖到临床的医生,为他们提供临床上更加有价值的建议和更加有价值的结论。


第一,实现以患者为中心的个性化的基于基因组的诊断和检测,为临床的医生打造一个多学科的智能的决策的系统;第二,能够突破现行科室的限制,其让患者享受专家级MDT团队服务;第三,算法将顶级医院的数据和专家的知识集成到系统里面,将顶级专家的知识和经验下沉,最后推广到基层医院里面,让全国各级医院都能够受益。


此外,倪浩还曝光了依图医疗的产品矩阵。

640-10.jpeg

倪浩:IBM Watson不是一流的人工智能公司,完全不能代表医疗人工智能产业

2
Top